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Synthesis of butenolides as seed germination stimulants
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Abstract

Syntheses of a series of novel butenolides as seed germination stimulants are described. The key steps include the cyclization reaction
of enamine 4 to form a pyran ring, the efficient halogenating reaction and the selective lithiation reaction of butenolides.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

The butenolide, 3-methyl-2H-furo[2,3-c]pyran-2-one (1),
has recently been identified as a constituent of smoke. It
has been shown to possess unique germination properties
at extraordinarily low concentrations, as low as 10�9 M,
and has therefore been postulated to play a role in field
and forest restoration following fires.1 The synthesis of 1

has recently been reported, however, we sought an alter-
nate synthesis for our analog program directed at struc-
ture–activity studies.2 Here we report a new synthesis to
the plant-derived butenolide 1 as well as the synthesis of
analogs of formula 2 (Fig. 1).
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To accomplish this we envisioned a strategy that utilized
a ring closure of compound 4, or its equivalent aldehyde, to
form the pyran ring of butenolide 3 (Fig. 2). Enamine 4 is
readily available from the known butenolide 5.3
2. Results and discussion

Enamine 4 was readily prepared by simply heating
butenolide 5 with excess N,N-dimethylformamide dimethyl
acetal and removing the methanol generated by distillation
(Scheme 1). Without further purification, 4 was converted
to aldehyde 6 by treatment with 1.0 M aqueous HCl afford-
ing compound 6 in 60% yield over two steps.4 Cyclization
of aldehyde 6 in the mixed solvents THF/CF3COOH/
H2O (20:2:1) resulted in butenolide 8 in 29% yield. In con-
trast cyclization of aldehyde 6 in the solvent mixture
CF3COOH/dioxane (3.75:1) provided the decarboxylated
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Scheme 1. Reagents and conditions: (a) Me2NCH(OMe)2; (b) HCl, THF, 60% for two steps; (c) THF/CF3COOH/H2O; 29%; (d) dioxane/CF3COOH,
32%; (e) THF/CF3COOH/H2O; 15% for two steps; (f) CF3COOH/H2O, 15% for two steps.
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butenolide 7 in 32% yield.5 Butenolides 7 and 8 could also
be prepared directly from the freshly prepared enamine 4

although in the significantly lower yield of 15%.6

Introduction of substituents at the 3-position of com-
pound 7 was accomplished as shown in Scheme 2. Treat-
ment of 7 with NBS in ethanol at room temperature7

provided the corresponding bromide 9b in excellent yield.
Chloride 9a and iodide 9c were obtained via the same pro-
cedure using NCS or NIS in good yield. With the haloge-
nated compounds 9 in hand, various functional groups
could be introduced. For example, the trifluoromethyl ana-
log 10 was obtained by treatment of 9c with trifluro-
methyltriethylsilane in the presence of copper iodide and
potassium fluoride in NMP according to the literature
procedure.8 Introduction of electrophilic groups was
accomplished by reaction of bromide 9b or iodide 9c with
an alkyllithium or alkylmagnesium halide to form an orga-
nometallic intermediate, followed by quenching with an
electrophile R3X.9 Alternatively, the palladium catalyzed
coupling reaction of 9b or 9c with boronic acids or tin
reagents provided analogs 12 in moderate to good yield.10

The natural butenolide 1 could be prepared by either
method (Table 1, entries 2 and 5).

In order to introduce substituents at the 7-position of
compound 13 or 1 an interesting method was developed
via direct metalation as shown in Scheme 3. Treament of
13a with LHMDS in THF at �78 �C followed by quench-
ing with trimethylsilyl chloride, afforded 14b (R = H,
R2 = SiMe3) in 50% yield. The structure of 14b was unam-
biguously confirmed by X-ray structural analysis.11 Appli-
cation of this procedure with different substrates of
compounds 13 or 1 (R = H, Br or Me) provided the corre-
sponding analogs of 14. These results are summarized in
Table 2. In addition, the chemical yield was improved from
50% to 90% by mixing substrate 13a with the TMSCl prior
to the addition of LHMDS as can be seen in Table 2 by
comparison of entries 2 and 6. A similar result was
obtained with substrate 1 (R = CH3, Table 2, entry 5).
Alternatively, the palladium catalyzed coupling of iodide
14a with a variety of boronic acids or organotin reagents
also allowed for preparation of derivatives at the 7-
position.

In conclusion, we have demonstrated a very efficient
route to butenolides 7 and 8. The halogenation of 7 opens
the door to various butenolide analogs for SAR explora-
tion, including the preparation of the natural seed germina-
tion stimulant 1. The selective lithiation of 13 or 1 allows
for the preparation of a variety of derivatives. Some of
these analogs have shown germination activity equivalent
to butenolide 1.
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Scheme 2. Reagents and conditions: (a) (i) NCS, EtOH, 8a, 70%; (ii) NBS,
EtOH, 8b, 90%; (iii) NIS, EtOH, 8c, 60%; (b) CF3SiEt3, KF, CuI, 1-methyl-
2-pyrrolidinone, 50%; (c) n-BuLi, THF, �78 �C, R3X; (d) Pd(OAc)2, S-
Phos, K3PO4, R4B(OH)2, toluene; or Pd(PPh3)4, LiCl, R4SnBu3, toluene.
S-Phos: 2-dicyclohexylphosphino-20,60-dimethoxybiphenyl.

Table 1
Electrophilic substitution of compounds 9

Entry Substrate Reactant
(R3X or R4X)

Product Yield
(%)

1 9c CF3SiEt3 10 45
2 9b MeI 1 (R3 = Me) 20
3 9b TMSCl 11b (R3 = SiMe3) 20
4 9c PhCHO 11c (R3 = CHOHPh) 10
5 9b MeB(OH)2 1 (R4 = Me) 90
6 9b EtB(OH)2 12b (R4 = Et) 55
7 9b CH2@CHSnBu3 12c (R4 = CHCH2) 60
8 9b PhB(OH)2 12d (R4 = Ph) 85

9 9c
O

SnBu3
12e (R4 = 2-furan) 80

O

O

OR

O

O

OR

R2

1413a R = H
13b R = Br
1 R = Me

a

Scheme 3. Reagents and conditions: (a) LHMDS, THF, �78 �C, R2X.
LHMDS: lithium bis(trimethylsilyl)amide.

Table 2
Electrophilic substitution of compounds 13

Entry Substrate R2X Product Yield (%)

1 13a (R = H) I2 14a (R2 = I) 35
2 13a (R = H) TMSCl 14b (R2 = SiMe3) 50
3 13a (R = H) ClCOOMe 14c (R2 = COOMe) 30
4 13b (R = Br) TMSCl 14d (R2 = SiMe3) 10
5 1 (R = CH3) TMSCl 14e (R2 = SiMe3) 90
6 13a (R = H) TMSCl 14b (R2 = SiMe3) 90
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